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Abstract. Surveillance testing within healthcare facilities provides an opportunity to prevent severe outbreaks of 

coronavirus disease 2019 (COVID-19). However, the quantitative impact of different available surveillance strategies 

is not well-understood. Our study adds to the available body of evidence by examining different strategies for their 

potential to decrease the probability of outbreaks in these facilities. Based on our findings, we propose determinants 

of successful surveillance measures. To this end, we establish an individual-based model representative of a mental 

health hospital yielding generalizable results. Attributes and features of this facility were derived from a prototypical 

hospital, which provides psychiatric, psychosomatic and psychotherapeutic treatment. We estimate the relative 

reduction of outbreak probability for three test strategies (entry test, once-weekly test and twice-weekly test) 

relative to a symptom-based baseline strategy. We found that fast diagnostic test results and adequate compliance 

of the clinic population are mandatory for conducting effective surveillance. The robustness of these results towards 

uncertainties is demonstrated via comprehensive sensitivity analyses. In summary, we robustly quantified the 

efficacy of different surveillance scenarios and conclude that active testing in mental health hospitals and similar 

facilities successfully reduces the number of COVID-19 outbreaks. 

Introduction 
Treatment and care facilities with intermediate to long-term treatment durations pose a setting 

in which active COVID-19 surveillance strategies are urgently required. This became apparent 

from the numerous reports of disastrous outbreaks in skilled nursing facilities [1, 2] which host a 

population at an age-related high risk of fatal disease courses [3].  Psychiatric and psychosomatic 

facilities are faced with the challenge to maintain and ensure patient and staff security with at 

the same time increasing psychiatric symptoms in patients [4] and safety concerns in regard to a 

possible hospital stay. Establishing ways to effectively protect these populations allows these 

facilities to continue their regular functions despite of the current circumstances. Thus, these 

facilities in particular may substantially benefit from interventions intended to decrease the risk 

of possible COVID-19 outbreaks.  

Surveillance aims at the disruption of evolving infection clusters in order to halt the 

spread of infection. Existing COVID-19 surveillance strategies revolve around detection of 

infected individuals in order to isolate them and their close contacts. To this end, possible 
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infections are commonly confirmed by polymerase chain reaction (PCR) tests [5]. Yet, such tests 

are subject to certain structural constraints as they need to be performed in a laboratory which 

effectively delays the initiation of isolation and tracing. To circumvent these constraints, the use 

of point-of-care (PoC) tests in the form of faster but less sensitive antigen tests has been 

proposed. Although those tests might only detect individuals with high enough viral loads to 

actually be infectious [6], the fact that those tests can be carried out by each individual 

autonomously allows to make at least a tentative COVID-19 diagnosis with greater flexibility and 

in a less centralized manner. This highlights their possible use for surveillance in single 

institutions. 

The efficacy of surveillance testing in preventing outbreaks can be either assessed by 

empirical or by more conceptual means. Empirical observational studies are a necessary tool to 

validate the benefits of implementing surveillance. However, these studies are difficult to 

conduct correctly since the heterogeneity of treatment facilities and settings impairs the 

comparability of the impact of different interventions. Hence, modelling studies are essential to 

complement empirical evidence. They are considerably less restrictive in terms of possible 

scientific questions that can be answered and allow for the investigation of interventions under 

clearly specified assumptions. Modelling allows to conceptualize the important aspects of the 

problem [7] and to identify the main determinants responsible for observed phenomena.  

High quality evidence about the benefits of surveillance testing is sparse. However, there 

are existing modelling studies that tackle different aspects of surveillance testing, such as limited 

availability of test resources [8], cohorting of staff and residents [9], and regular testing of 

staff/residents at different frequencies [10]. Those results are of limited generalizability: Most 

models report outcomes for which a reasonable quantification of uncertainties is impossible, e.g. 

the cumulative number of infections at a late stage of the outbreak. Uncertainties about the 

structure of the infection spread and the underlying epidemiological parameters amplify the 

uncertainties of the outcome in a non-linear manner which complicates the conduct of rigorous 

analyses.  

We add to the available body of evidence by proposing an individual-based model 

representative of a prototypical psychiatric-psychosomatic hospital offering treatment to 

patients for extended periods of time. Our study aims at providing some generalizable key results 

with a robust quantification of their uncertainty. This is achieved by conducting a comprehensive 

set of sensitivity analyses of parameters and various structural assumptions presented in an 

easily accessible form. 
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Methods 

Simulation Structure 
We simulate the propagation of infection and implementation of surveillance measures in a 

hospital (Oberberg Fachklinik Schwarzwald) with 60 inpatients with an average duration of stay 

of 8 weeks and 80 staff members. The simulated clinic is initialized with a fully susceptible 

population whose properties are updated daily for a total simulation time of 100 days. The facility 

is modelled as a semi-closed environment: Propagation of infection within the clinic is treated as 

a closed system, but interactions with the environment outside of the clinic can introduce 

infected individuals into the clinic. Figure 1A shows the different possibilities of virus intrusion 

into the clinic: New infectious patients may be admitted to the clinic, patients may be visited by 

infectious visitors or be infected on a temporary weekend leave from the clinic while staff could 

get infected between work shifts. Each simulation is subject to a set of parameter assumptions; 

the sets of parameters used in this study are extracted from the literature and summarized in 

Table 1. 

Propagation of Infection 

The infection dynamics are implemented in the model at the level of individual agents which 

represent individuals in the clinic population. Individual-based models offer a high flexibility and 

allow for incorporation of inter-individual heterogeneity and inherent stochasticity, such that 

they are well suited to model relevant features of the epidemiological dynamics realistically [11]. 

The current state of disease progression is tracked for every agent individually. Based on the 

current state of the infected individuals within the clinic the probability of infection is derived for 

all susceptible individuals. The risk of infection depends on the disease states of the agents but 

also on various dynamic properties, such as quarantine, possible absence from the clinic and 

current infectivity of agents. The infection dynamics are stochastic, i.e. it is randomly drawn 

whether an agent is infected on a given day or not. 

The disease progression is modelled structurally similar to a homogeneous stochastic 

SEIR-model [12], but extended to incorporate characteristic features of COVID-19 and a more 

realistic transmission structure. Asymptomatic individuals who display no noticeable symptoms 

show a significant transmission potential [13, 14]. This is partly due to presymptomatic 

transmission, as viral shedding begins already before symptom onset [15], i.e. during the 

incubation period. This leads to an extended list of states incorporated in our model: Susceptible 

𝑆, Exposed 𝐸, Presymptomatically Infected 𝐼𝑃, Symptomatically Infected 𝐼𝑆, Asymptomatically 

Infected 𝐼𝐴,  Removed 𝑅. The progression of disease states is illustrated in Figure 1B.  

Variations in the natural history of the disease are not only manifested in the display of 

symptoms but also in the timing of the different disease states. It has been shown that accounting 

for stochasticity in these timings significantly affects the modelled spread of a virus [12]. 
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Consequently, the incubation time, the symptomatic time as well as the presymptomatic time 

are defined as random variables. The resulting distributions of these durations are visualized in 

Figure 2A assuming best guess parameters. The range of the uniformly distributed 

presymptomatic time is based on [1, 15–17], incubation time and symptomatic time are 

lognormal with parameters as defined in Table 1. Variations of infectiousness of individuals is 

driven by their different biological and behavioural components [18]. Empirically, this varying 

degree of infectiousness can be used to explain the offspring distribution, i.e. the number of 

secondary cases caused by the respective primary cases [19]. For transmissions of SARS-CoV-2, 

these offspring distributions have been observed to be highly asymmetric [20, 21], implying the 

existence of super-spreading. Based on these observed distributions, similar distributions have 

been reproduced qualitatively using our model by defining the individual infectiousness to be 

Gamma-distributed. 

Temporal variations of the infectiousness of agents at different stages of their disease are 

represented by time-dependent infectivity profiles [18, 22]. The infectivity of agents is modelled 

to increase linearly until a peak infectivity is reached, after which it will decrease linearly until the 

end of the symptomatic phase [23, 24]. Figure 2B shows a sample of infectivity profiles for 20 

random individuals. The profiles vary in their behaviour over time and in their general scale, 

representing random time spans for disease courses and agents with different transmission 

potential. 

Heterogeneity in the transmission structure has been found to play a key role in infection 

spread, e.g. by application of infection models on networks [25, 26] or age-stratified contact 

matrices [27, 28]. In order to implement a relevant heterogeneous transmission structure into 

our model, the four agent classes - patients, low-risk staff, average-risk staff and high-risk staff - 

are defined. The transmission rates between these classes are modified using transmission 

matrices, which include information about the staff’s occupation and the duration of shifts. In 

order to adjust for the scale of transmission dynamics, model parameters are calibrated to return 

pre-specified values of the reproduction number 𝑅0. A more detailed description and justification 

of the modelled infection dynamics and the calibration process can be found in the 

supplementary materials. 

Conducting surveillance 
Surveillance measures are implemented to detect and prevent the spread of infection within the 

clinic. This is achieved by enforcing quarantine on individuals who display symptoms or 

individuals who were tested positive in screening measures. Once an agent is quarantined, the 

agent is assumed to be non-infectious during the time of isolation. The fundamental concepts of 

outbreak detection and containment represent a symptom-based baseline surveillance scenario 

which is common to all considered surveillance strategies. It comprises i) isolation based on 
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symptoms, ii) case ascertainment via diagnostic testing, and iii) subsequent contact tracing to 

isolate contacts at high risk of possible contagion due to previous contact with the index case. 

 Isolation based on symptoms is modelled as a daily probability of isolating an agent in the 

symptomatic state 𝐼𝑆. Typical symptoms of COVID-19 are not specific to this disease and may be 

mild, such that the possibility of unjustified isolations of healthy individuals is included. In order 

to properly deal with such ambiguous cases, a case-ascertainment process is needed to 

distinguish non-infectious from infectious individuals. Modelling case-ascertainment requires 

specification of a diagnostic test which can assess the disease state of an individual or, more 

specifically, whether the individual is infectious. The performance of the diagnostic test used in 

the model is uniquely specified by its sensitivity, specificity, and test-to-result delay. Performance 

of the PoC test used in the model is based on the PanbioTM COVID-19 antigen rapid test (Abbott) 

[29] as employed in the factual hospital. Finally, contact tracing disrupts possible chains of 

infection once infected individuals are detected. It is modelled by immediate isolation of 

secondarily infected individuals once the primary case has been ascertained, given a certain 

success probability of locating the secondary cases. Figure 1C summarizes the three mentioned 

concepts inherent to baseline surveillance by displaying hypothetical chains of infection and their 

subsequent detection via the surveillance measure. 

Four different surveillance strategies are evaluated quantitatively: The aforementioned 

symptom-based baseline surveillance strategy and three active surveillance strategies. Active 

surveillance strategies comprise preventive testing of the clinic population. The first strategy is 

the baseline surveillance. The second strategy, termed entry testing, aims at detecting the 

intrusion of the virus into the clinic at the entry point, in addition to baseline surveillance. To this 

end, patients which are newly admitted to the clinic or who return from temporary absence are 

tested immediately when entering the clinic and five days after, which accounts for potentially 

long incubation times. The third and fourth strategy implement regular testing of the clinic 

population on top of entry testing and baseline surveillance, i.e. testing every agent once weekly 

or twice weekly, respectively. As individual agents may refuse to participate in such preventive 

testing measures, compliance to testing measures is defined as an additional agent property. 

Non-compliant agents will not be tested for strategies which impose regular testing on the clinic 

population, i.e. for the third and fourth strategy. 

Quantifying Outcomes 

In order to quantitatively evaluate the efficacy of the different strategies, suitable outcome 

measures are defined. The primary outcome measure of interest is the reduction of outbreak 

probabilities between two defined strategies. An outbreak is defined as 𝑁 ≥ 3 new infections 

over a time span of 𝑇 = 10 days, given a 100 day simulation run. The outbreak probability is 

defined as the proportion of simulation runs in which an outbreak occurred. Variations of 

parameter assumptions affect the outbreak probability for different strategies similarly. 
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Consequently, ratios of outbreak probabilities of two strategies are likely less impacted by the 

parameter uncertainty than it is the case for absolute probability values. Stochastic uncertainty 

is minimized by generating at least 200.000 simulation runs for any simulation scenario, i.e. for 

any combination of parameters and strategy considered. The remaining stochastic uncertainty of 

results is indicated by error bars where applicable. In order to assess parameter uncertainty 

comprehensively, all model parameters are varied in a 1-way sensitivity analysis. This analysis 

varies one parameter at a time within its existing uncertainty, keeping all other parameters fixed 

at their best guess value. Parameters which have been observed to have little to no impact on 

results are excluded in the final analyses displayed here. In order to assess practicability of the 

proposed strategies, the amount of people under quarantine and the number of tests conducted 

per day are monitored as secondary outcomes. 

Results 

Quantifying Outbreak Probability Reduction 
The relative reduction of outbreak probability by entry, once weekly and twice weekly testing 

relative to the symptom-based baseline strategy is displayed in Figure 3 for all parameter 

combinations relevant to the 1-way sensitivity analysis.  

Implementing entry testing reduces the probability of an outbreak by 26% relative to the 

baseline only strategy, additionally testing of the clinic population once or twice weekly reduces 

the outbreak relative to the baseline strategy by 49% and 67%, respectively. These results are 

indicated by solid black lines which correspond to the best guess parameters in Table 1. 

Deviations from best guess parameters in the 1-way sensitivity analysis are visualized by the 

coloured points around the black line. Blue points indicate variation of the respective parameter 

towards the lower bound of the uncertain parameter range, while red points indicate variation 

towards the upper bound. The best guess outbreak probability reductions are mostly robust to 

variations of parameters and the large number of simulations conducted leads to narrow 

stochastic uncertainties. The sensitivity of the diagnostic test and compliance of the clinic 

population critically determine the efficacy of the strategy. Both of these parameters are not 

epidemiological quantities and can therefore be targeted for optimization in applications, which 

due to their large impact may lead to a considerable reduction in outbreaks. Epidemiological 

parameters with noticeable impact on the uncertainty of results are the reproduction number 

(R0), the probability of contracting an infection outside of the clinic (OutsideInfection) and the 

timing of the peak of infectiousness (PeakInfectiousness). 

In order to assess the efficacy of the symptom-based baseline surveillance, it is compared 

to a scenario with no surveillance in the supplementary Figure S1 analogously to the analysis in 

Figure 3. Conducting baseline surveillance compared to no surveillance at all reduces the 

probability of an outbreak by 49% assuming best guess parameters. This result lacks robustness 
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to many parameter assumptions, ranging between values of 32% to 68%. Notably, this result is 

sensitive to assumptions on parameters which are important to the efficacy of symptom-based 

surveillance, such as the proportion of asymptomatic cases (AsymptomaticFraction), the timing 

of the peak of infectiousness (PeakInfectiousness), the reproduction number (R0) and the success 

rate of symptomatic screening (IsolationFraction). 

Test Specificity Drives Practical Feasibility 
Practical feasibility of the strategies is assessed by analysing the secondary outcomes, i.e. the 

amount of tests conducted per day and the amount of individuals in quarantine on a given day. 

Since testing twice weekly is the most extensive testing strategy proposed, these outcomes have 

been analysed in a full 1-way sensitivity analysis. The results are visualized in the supplementary 

Figure S2. For the best guess parameters, approximately 37 tests are conducted daily and one 

individual is isolated in quarantine per day in a clinic of approximately 140 individuals. The 

number of tests is predominantly determined by the compliance of the clinic population. The 

main driver of total quarantine time is the specificity of the diagnostic test. If the specificity of 

the test is decreased from 99.5% to 98%, the average amount of people in quarantine per day 

increases 4-fold. This is reasonable since even in the absence of infections, false positives are 

expected regularly due to testing of the whole clinic population twice weekly. All other 

parameters have a comparably negligible effect, suggesting that effects such as over-sensitive 

symptom detection will likely not limit the practical applicability of surveillance.  

Effective Surveillance Requires Immediate Test Results 

The test-to-result delay of diagnostic tests differs between PCR and PoC antigen tests. Thus, 

analysing the effect of this delay on the efficacy of surveillance measures may provide valuable 

insight regarding their usefulness in application. In order to demonstrate possible effects, the 

different surveillance strategies are simulated for delays of 𝑡𝑑𝑒𝑙 ∈ [0,1,2] 𝑑𝑎𝑦𝑠 in contrast to the 

previous analyses which assumed immediate availability of test results. Assuming previously 

demonstrated robustness of results, simulation runs are evaluated under the best guess 

parameters for all considered delays and all surveillance strategies. 

Figure 4A shows the outbreak probabilities normalized relative to their value for baseline 

surveillance. The effect of increased surveillance is much more pronounced if the test-to-result 

delay is small, rendering the preventive effect of additional measures almost useless if the test-

to-result delays reaches two days. The decrease in efficacy is likely due to the existence of 

symptomatic isolations in the baseline surveillance setting. Additional surveillance testing will 

only improve upon baseline surveillance if infected individuals are detected before they become 

symptomatic. In order to improve on a setting in which symptom-based baseline surveillance is 

practiced, diagnostic tests have to provide fast test results to conduct effective surveillance. 
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Strict Surveillance Improves Outbreak Containment  

Variation of the outbreak size, defined earlier as ≥ 3 infected individuals over a course of 10 

days, provides insight about the effective containment of outbreaks. Outbreak probabilities have 

been simulated for the four defined strategies and four outbreak sizes 𝑁𝑜𝑢𝑡 ∈ [2,3,4,5] assuming 

best guess parameters. Figure 4B shows the outbreak probabilities relative to their largest value, 

i.e. the baseline surveillance strategy with 𝑁𝑜𝑢𝑡 = 2. A decreasing outbreak probability with 

increasing outbreak size implies containment of occurring outbreaks. A steeper decrease is 

equivalent to more effective outbreak containment indicating that the more extensive 

surveillance strategies provide more effective containment of outbreaks. While approximately 

44% of outbreaks of size 2 evolve to outbreaks of size 5 for the baseline surveillance strategy, this 

fraction drops to about 19% of outbreaks for testing twice weekly. 

Lack of Compliance Limits Efficacy of Regular Testing 

A population fully compliant to active surveillance testing is not guaranteed in an application 

setting. Therefore, the impact of varying levels of compliance with regular preventive testing 

measures in the clinic population are investigated. Different test frequencies are analysed using 

the best guess parameters and assuming established baseline surveillance and entry testing. 

Figure 4C shows the resulting outbreak probability for different frequencies and varying levels of 

compliance relative to the outbreak probability of the strategy with the lowest compliance and 

without additional testing. Increasing compliance from 60% to 100% of the population decreases 

the outbreak probability by 24% if testing is conducted once weekly and by 91% if testing is 

conducted daily. Thus it is concluded that a lack of compliance limits the efficacy of regular 

testing, especially if testing frequency is high. 

Discussion 
We employed an individual-based model tailored to the setting of a typical mental health 

treatment facility to explore different surveillance strategies intended to suppress COVID-19 

outbreaks. We modelled four surveillance strategies: symptom-based baseline surveillance, 

entry testing, testing once a week or testing twice a week. For each active surveillance strategy, 

estimates for the relative reduction of outbreak probability compared to the baseline strategy 

were obtained. We investigated critical determinants of the epidemiological dynamics and found 

that fast test results, high compliance and high test sensitivity are crucial for a successful 

outbreak prevention. Investigation of the average number of diagnostic tests conducted and 

individuals under quarantine per day showed that regular testing is practically feasible if 

specificity of the diagnostic test is sufficiently high as this implies a low number of false positive 

test results. 

A comprehensive sensitivity analysis confirmed the robustness of the obtained results 

under varying assumptions about a set of uncertain parameters. The model has been 
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parametrized such that alternative model structures can be analysed. Examples are the 

parametrization of heterogeneity in the contact structure or the parametrization of different 

distributions of the infectiousness of individuals by scalar parameters. Moreover, the stochastic 

nature of the simulation model has been controlled for by generating a sufficient amount of 

simulation runs. Although an appropriate analysis of uncertainty has been conducted, the 1-way 

sensitivity analysis employed does not yield confidence or credible intervals on the generated 

estimates. However, the 1-way sensitivity analysis provides easily interpretable outcomes and 

introduces no additional bias compared to probabilistic sensitivity analyses, which require the 

specification of poorly known parameter probability distributions [11]. 

We focused on the suppression of outbreaks, defined here as 2-5 newly infected 

individuals over the course of 10 days. This approach differs from previous modelling studies 

which considered outcomes that focus on late outbreak stages, e.g. the number of cumulative 

infections [8–10]. The simulation of an outbreak for a long period of time amplifies the 

uncertainty in the assumed transmission mechanisms and in the epidemiological parameters due 

to the non-linear infection dynamics. Consequently, focusing the analysis on prevention of small 

outbreaks leads to uncertainties that can be controlled more realistically. Additionally, the small 

outbreak setting may reduce the impact of the modelled contact structure on the simulation 

results considerably. Indeed, we could see in our study that the impact of the parameter 

controlling the extent of heterogeneity in the contact structure was negligible. Therefore, only 

the variation of individual transmissibility needs to be incorporated into the model, but not an 

explicit contact structure as employed in many other studies [8–10, 25, 26]. Limiting results to 

small outbreak sizes is not restrictive in the practical application as even small outbreaks have 

major consequences for psychiatric clinics or skilled nursing facilities and should, therefore, be 

avoided as rigorously as possible. 

Another important structural limitation is the assumption of constant sensitivity of 

diagnostic tests during the course of disease. To account for this, in the future, the course of 

disease could be defined based on a viral load profile across time which is proportional to 

infectiousness as well as the sensitivity of the diagnostic test [24]. Current evidence suggests that 

PoC antigen tests can indeed perform well to detect relevant levels of viral load [29], highlighting 

the difficulty in establishing PoC test performance when compared to PCR tests as a reference 

standard [5]. In order to allow for a fair comparison between surveillance based on PCR tests and 

PoC antigen tests different detection threshold levels for viral load have to be included in the 

model. However, this does not affect our conclusion that short test-to-result delays are crucial 

for effective surveillance. 

 COVID-19 surveillance in hospitals with long treatment duration and long-term care 

facilities provides a unique opportunity to create a safe environment for a vulnerable population. 

In this context, adequate assessment of the gain of various mitigation strategies is sparse but 
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urgently needed to establish standards for practical implementation of strategies. In order to 

complement the existing literature, we quantified the effect of various surveillance strategies on 

the probability of occurring viral outbreaks. We demonstrated that implementing these 

strategies is practically feasible. We found that improving strategies based on isolating 

symptomatic individuals by means of testing-based strategies requires fast diagnostic test 

results, highlighting a possible use of point-of-care tests in this setting. Furthermore, we highlight 

the importance of a compliant population in order to maximize efficacy of regular testing. Overall, 

our results suggest that establishing surveillance exceeding symptom-based screening alone can 

successfully reduce disease burden in hospitals and long-term care facilities.  
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Tables 

 

  

Name Unit Lower Best Upper Description Source 
Asymptomatic 
Fraction 

[%] 10 20 30 Fraction of asymptomatic disease 
courses 

[14, 30–32] 

Asymptomatic 
Infectivity 

[%] 40 70 100 Infectiousness of asymptomatic 
individuals compared to 
symptomatic individuals 

[1, 14, 31] 

False Symptoms [agents/
day] 

0.5 1 2 Average daily amount of non-
COVID-19 related symptomatic 
individuals  

Assumed 

False Traces [agents/
day] 

4 8 12 Average amount of erroneously 
traced individuals assuming perfect 
tracing efficiency 

Assumed 

Heterogeneity 
Modifier 

[1] 2 4 6 Scaling factor of transmission 
matrix in infectivity of high-
risk/low-risk staff 

Assumed 

Incubation Mean [days] 5 5.5 6 Mean of incubation time [33, 34] 

Incubation SD [days] 2.1 2.3 2.5 Standard deviation of incubation 
time 

[33] 

Infectivity 
Heterogeneity 

[1] 1 1.5 1000 Heterogeneity in individual 
infectivity: Shape parameter of the 
Gamma-distribution 

Derived 
from 
[20, 21] 

Isolation Fraction [%] 50 70 90 Fraction of symptomatic individuals 
isolated daily 

Assumed 

Outside Infection [1] 0.01 0.04 0.16 Scaling factor of infection risk 
outside of clinic 

Assumed 

Peak 
Infectiousness 

[days] -1 1 3 Time shift of peak infectiousness 
relative to symptom onset 

[17] 

Prevalence [%] 0.005 0.02 0.08 COVID-19 prevalence in population 
including non-confirmed cases 

Assumed 

R0 [1] 1.5 3 5 Average number of infections an 
individual causes inside of clinic 

Assumed 

Symptom Mean [days] 3.5 5 6.5 Mean of symptomatic infectious 
time  

Derived 
from 
[16, 35–37] 

Symptom SD [days] 1.1 1.5 1.9 Standard deviation of symptomatic 
infectious time  

Derived 
from 
[16, 35–37] 

Test Compliance [%] 60 80 100 Fraction of individuals compliant 
with repeated surveillance testing 

Assumed 

Test Sensitivity [%] 80 90 100 Sensitivity of diagnostic test Derived 
from 
[6, 29, 38] 

Test Specificity [%] 98 99.5 100 Specificity of diagnostic test Assumed 

Tracing Fraction [%] 50 70 90 Fraction of infections reconstructed 
by contact tracing 

Assumed 

Table 1. Summary of the used model parameters and their uncertainties according to literature. Upper and lower bounds are used for 
1-way sensitivity analysis and they represent the existing lack of knowledge about these parameters. The term “derived from” indicates 
that input from the stated sources was not directly applicable in the model and required some form of subjective judgement and 
modification prior to the inclusion into the model. 
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Figures 

 

Figure 1. A: Interactions of clinic and environment. The possibilities of introducing the virus are indicated by the red arrows. 
B: General structure of disease progression. 𝑆: Susceptible, 𝐸: Exposed, 𝐼𝑃: Presymptomatically Infectious, 𝐼𝑆: Symptomatically 
Infectious, 𝐼𝐴: Asysmptomatically Infectious, 𝑅: Recovered. C: Symptom-based baseline surveillance in a hypothetical case 
scenario. Agent 1 has been infected outside of the clinic (index case) and infects agent 2, who goes on to infect agent 3 and 4. On 
day 6, agent 2 is isolated due to developing symptoms and once the case is ascertained a day later, contact tracing isolates the 
primary infector (backward tracing) and subsequent infections by agent 2 (forward tracing). The isolated individuals are then 
tested, confirming that agent 1 and agent 3 are infectious. Agent 4 is released as the infection is not yet detectable. 
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Figure 2. A: Distributions of retention times for different disease states in our simulations for the best guess parameters 
extracted from literature. B: 20 randomly drawn infectivity profiles. Each profile corresponds to the time course of infectiousness 
of one individual. The individual profiles have different onsets and infectivity levels. 

 
Figure 3. Reductions of the outbreak probabilities by entry testing, once weekly and twice weekly testing relative to the 
symptom-based baseline strategy on a log2-scale. The black lines correspond to the estimate of outbreak reduction for the best 
guess parameters. Each point corresponds to the estimated outbreak reduction for a 1-way sensitivity analysis of the 
corresponding parameter towards its upper bound (red) or lower bound (blue). Uncertainties due to stochasticity of the 
dynamics are visualized by 1𝜎 error bars. The results for the expected reduction of the outbreak probability are robust to most 
epidemiological parameter assumptions, the exact parameter values employed are stated in Table 1. 
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Figure 4. The vertical axes denote outbreak probabilities on a log 2-scale, normalized relative to the largest outbreak probability 
of the respective analysis. Uncertainties due to stochasticity of the dynamics are visualized by 1𝜎 error bars, but these are 
mostly smaller than the point size. Results correspond to the best guess parameter set (except for changes for the particular 
analysis). A: Impact of changing the test-to-result delay on the relative outbreak probability. Decreasing test-to-result delay 
leads to more effective surveillance. B: Impact of redefining the outbreak size on the relative outbreak probability. Decreasing 
probabilities within a strategy implies containment of ongoing outbreaks. C: Impact of compliance on the outbreak probability 
for various regular testing frequencies implemented on top of the symptom-based baseline surveillance strategy and entry 
testing. The horizontal axis corresponds to a frequency scale, as test frequency is proportional to test resources required. 
Benefits of increasing the test frequency are limited by lack of compliance, especially if test frequency is already high.  
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